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Abstract--Two-phase MHD flow and heat transfer in an inclined channel is investigated in which one 
phase being electrically conducting. The transport properties of both fluids are assumed constant. The 
resulting governing equations are coupled and nonlinear. An approximate solution is obtained using 
perturbation method. The results are presented for various values of the ratios of viscosities, thermal 
conductivities, heights of the fluid, Hartmann number, Grashof number and angle of inclination. It is 
found that the velocity and temperature can be.increased or decreased with suitable values of the ratios 
of viscosities, thermal conductivities, the heights and the angle of inclination. ~) 1997 Elsevier Science 
Ltd. All rights reserved. 

Key Words: MHD, two-phase, inclined, heat transfer 

1. I N T R O D U C T I O N  

In the petroleum industry, as well as in other engineering fields, stratified two-phase flow often 
occurs. There has been some experimental and analytical studies on hydrodynamic aspects of 
two-phase flow reported in the recent literature. The interest in these types of problems stems from 
the possibility of reducing the power required to pump oil in a pipeline by suitable addition of 
water. Packham and Shail (1971) analyzed stratified laminar flow of two immiscible liquids in a 
horizontal pipe. Hartmann flow of a conducting fluid in a channel with a layer of nonconducting 
fluid between upper channel wall and the conducting fluid has been studied by Shail (1973). He 
found that an increase of the order 30% can be achieved in the flow rate for suitable ratios of depths 
and viscosities of the two fluids. 

The advent of technology in the field of MHD power generators and MHD devices, nuclear 
engineering and thermonuclear power has created a great practical need for understanding the 
dynamics of conducting fluids. The use of liquid metals as heat transfer agents and as working fluids 
in MHD power generators has created a growing interest in the study of liquid metal flows and 
nature of interaction with magnetic field. The interaction between the conducting fluid and 
magnetic field radically modifies the flow and heat transfer characteristics. 

The outlook for a direct coal-fired MHD power generator as potentially significant source of 
energy seems promising in view of its efficiency, its effect on environment and the availability of 
needed natural resources. The first investigation associated with two-phase liquid metal 
magnetofluidmechanics generator project at the Argonne National Laboratory were by Thome 
(1964). Postlethwaite and Sluyter (1978) have reviewed extensively the heat transfer problems 
associated with MHD generators. Lohrasbi and Sahai (1988) studied two-phase MHD flow and 
heat transfer in a parallel plate channel, with the fluid in one phase being conducting. Recently, 
Malashetty and Leela (1991, 1992) studied two-phase flow and heat transfer characteristics in a 
horizontal channel with the fluids in both phases being electrically conducting. These studies are 
useful in understanding the effect of the presence of a slag layer on heat transfer characteristics 
of a coal-fired MHD generator. 

The inclined geometry has received considerable attention in the heat transfer literature, 
attention undoubtedly stimulated by the growing interest in solar collector technology. The basic 
research in this area has been reviewed by Raithby and Hollands (1976) and Catton (1978). 
However, the study of flow and heat transfer in two-phase inclined channel has not received any 
attention even though the problem is of practical importance in many areas of technology. 
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Our study is motivated by the work of Lohrasbi and Sahai (1988) who investigated the effect 
of slag layer on the heat transfer characteristics of MHD generator channels. In the present 
problem, two-phase MHD flow and heat transfer in an inclined channel is studied. 

2. MATHEMATICAL FORMULATION 

The geometry under consideration illustrated in figure 1, consists of two infinite inclined parallel 
plates maintained at different constant temperatures, extending in the z and x-directions, making 
an angle gb with the horizontal. The region 0 ~< y ~< hi is occupied by an electrically nonconducting 
fluid of density p~, viscosity/~1, thermal conductivity K~ and the region -h2 ~< y ~< 0 is occupied 
by a different (immiscible) electrically conducting fluid of density p2, viscosity t~2, electrical 
conductivity a and thermal conductivity/(2. The transport properties of both fluids are assumed 
constant. A constant magnetic field of strength B0 is applied transverse to the flow field. The flow 
of both phases is assumed to be driven by a constant pressure gradient ( -~p/~x) ,  We consider 
the fluids to be incompressible and the flow is steady, laminar and fully developed. 

Under these assumptions, the governing equation of motion and energy for Boussinesq fluids 
are: 

For phase I 

d2ul ~p 
I ~ v 2  + Pig3, sin q~(T~ - Tw2) = [l] 

d~r,+ ,~ (dUl'~ ~ 
dy-' ~ k dy//  = 0. [2] 

For phase H 

d2u2  8p 
#2-~y2 + P2g3z sin q~(T2 - Tw2) + aB2u2 - Ox [3] 

dy 2 K-22\-~y'] + /(2 - 

~,g 

Figure 1. Physical configuration. 
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where u is the x-component  of  velocity, T is the temperature, fl is the coefficient of thermal 
expansion, g is the acceleration due to gravity. The suffixes 1 and 2 denote the values for phase 
I and II, respectively. 

The fluid and the thermometric boundary conditions are unchanged by the addition of 
electromagnetic field. The noslip condition requires that the velocity must vanish at the wall. In 
addition the fluid velocity, shear stress, temperature and heat flux must be continuous across the 
interface. 

Referring to figure 1, the boundary and interface conditions on velocity are, 

u, (h , )  = 0 

u, ( 0 )  = u , ( 0 )  

U2( - -  h2) = 0 [5] 

I.t,du~/dy = #2du2/dy at y = 0. 

Since the walls are maintained at constant different temperatures Tw~ and Tw2 at y = h~ and 
y = - h2, respectively, the boundary conditions on 7"1 and T2 are given by 

T,(h,) = Tw, 

T,(O) = T2(O) 

T 2 ( - - h 2 )  = Tw2 [61 

K, dT , / dy  = K2dT2/dy at y = 0. 

It is convenient to transform [1]-[4] to a nondimensional form. The following transformations are 
used: 

/./I ~ ---~ /,/1//~1, ~/ff  = U2/ffJ, yl* = y,/h~ 

y* = yz/h:, 0 = ( T -  Tw2)/(Tw, - Tw2) 

m = It,~#2, k = KI /K2,  h = h2/h, ,  

b = fl2/fl~, G r  = gfl,h~ ( T w ,  - Tw2)/v~, 

P r  = I~,Cp/K~, P = (h~ / t t ,~ , ) (Op/ax) ,  

E c  = a ~ / G ( T w ,  - Tw2) .  

n = pz/pl, 

M = Boh2x/aTfl2, 

Re = ~lh,/vl, 

[71 

Here Gr  is the Grashof  number, Ec is the Eckert number, Pr is the Prandtl number, Re is the 
Reynolds number, M is the Hartmann number, P is the nondimensional pressure gradient and & 
is the average velocity. 

With the above nondimensional quantities, the governing equations [1]-[4] become: 

Phase I 

G r  . 
d2u' + Ree sm q~0, = P [8] dy 2 

d20' + Pr Ec {dul'~ z 
dy 2 \ dy ] = O. [91 

Phase H 

d2//2 G r ,  ,2 
dy 2 + Ree omnn sin ( j~02  - -  M:u2 = mh2P [10] 
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Figure 2. Velocity profiles for different values of M. 

d202 + P r E c  ( k )  [du2~ 2 + M2 - -  Pr Ec ku~ = 0. [1 1] 
d f  \d--yJ m 

The asterisks have been dropped with the understanding that all 
dimensionless. 

The nondimensional  forms of  the velocity, temperature  and interface boundary  conditions [5] 
and [6] become: 

u,(1) = 0 

u,(0)-- u2(0) 

u2(- l )  = 0 

du,/dy = (1/mh)du2/dy 

G(1) = I 

o,(o)= 02(0) 

the quantities are now 

at y --= O. 

[13] 

[12] 
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02(- l )  = 0 

d0,/dy = (l/kh)dO2/dy at y = 0. 

549 

3. SOLUTIONS 

The governing equations of  momentum [8] and [I 0], along with the energy equations [9] and [1 1], 
are to be solved subject to the boundary and interface conditions [12] and [13] for the velocity and 
temperature distributions. In this case, the equations are coupled and nonlinear because of the 
inclusion of  the dissipation terms in energy equation. In most of the practical problems the Eckert 
number is very small and is of order 10 -s. Thus the fact that the product Pr Ec (=E) is very small 
can be exploited to use the perturbation method. To this end the solutions are assumed in the form: 

(u , ,O, )  = (u~0,0]0) + E(u,, ,O,O + . . .  [14] 

(U2 ,02 )  = (U20,020) -~- E(U21~,021)  Jr- " ' "  [15] 

where u~o, Ozo, u2o, 020 are solutions for the case E equal to zero. u],, 0~, u2~, 0z~ are perturbed 
quantities relating to U~o, 0]o, u2o, 020, respectively. Substituting the above identities in [8]-[1 1] and 
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Figure 3. Velocity profiles for different values of Gr. 
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Figure 4. Velocity profiles for different values of h. 

equat ing the coefficients o f  like powers  of  ~ to zero, we get the zeroth and first order  equat ions 
for phase  I and II as follows: 

Phase I 

Zero th  order  equat ions  

First  order  equat ions 

d2Ulo Or  
dy 2 + ~-~sin ~01o = P [16] 

d2010 
dy--- T = 0. [ 17] 

d2u" -I- Gr  
dy 2 ~ sin 4~0, = 0 

d20u ( ~ ) 2  
dy 2 + = 0. 

Bs] 

[19l 



Phase  H 

Zeroth order equations 

First order equations 

d2u21 Gr . 

dy 2 + Ree sm 4)bmnh:021 - M2u21 = 0 

d2u2o + Gr 
dy  2 ~ sin c~bmnh2020 - M2u20 = mh2P 

d 2 0 2 o  

dy----- y = O. 

dy z \ - ~ y J  + m U~o = O. 

The corresponding boundary conditions [12] and [13] reduce to: 

1.0 

0.8 

[20] 

[21] 

[22] 
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Figu re  6. Veloci ty  profi les  fo r  dif ferent  values o f  k.  

u~o(1) = 0 

u,o(O) = u2o(O) 

u2o(-- 1) = 0 

d u , o / d y  = ( 1 / m h ) d u : o / d y  

0,o(1) = 1 

O,o(O) = 020(0) 

02o(-- 1) = 0 

dO,o/@ = ( l / k h ) d O 2 o / d y  

u,,(l)  = 0 

u,,(O) = u~,(O) 

at  y = O. 

a t  y = O. 

[24] 

[251 

[26] 
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u2,(- 1) = 0 

du, , /dy  = ( l /mh)du2, /dy  at y = 0. 

0.(1) = 0 

o.(o) = o~,(o) 

021(- 1) = 0 

d O . / d y  = (1/kh)dO2ddy at y = O. 

Solutions of [16], [17] and [20], [21] using boundary conditions [24] and [25] are: 

0,o = (y  + kh)/(1 + kh) 

020 = ~h(y + ~)/(i + kh) 

Ulo = a~y 3 + a2y 2 + c~y + c2 

u20 = d~ coshMy + dE s inhMy + )q + J~y 

1.0 
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[271 

[28] 

[29] 

[301 

[31] 
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Figure 7. Velocity profiles for different values of m. 
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Figure 8. Temperature correction profiles for different values of M. 

where 

Gr . ( 6 ( l - + k h ) ) '  a : = l (  P 1--+khJ' G=ReeSmC~, al = - G khG 

kGbmnh 3 mh2P 
J~-M2(1 +kh)' f t  = M 2 ~- f2 ,  

d~ = 
mh 

M coshM + mh sinhM +N -jS}, 

Solutions of [18], [19] and [22], [23] using boundary conditions [26] and [27] are: 

011 = g l y 6 + g 2 y S + g s y 4 + g 4 y 3 + g s y 2 + e t y + e 2  [32] 
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021 = g6 cosh2My + g7 sinh2My + g8y  coshMy + ggy  sinhMy 

+ glo coshMy + gll sinhMy + g12y 4 q- g j3y  3 q- g14y 2 q.- e l y  + e2 [33] 

ujl = r~y 8 + r2y 7 + r3y 6 + r4y 5 + r s y  4 + r6y 3 + r7y 2 + j J Y  +j2 [34] 

u2J = j3 coshMy + f i  sinhMy + p~ cosh2My + p2 sinh2My + p 3 y  2 coshMy 

+pay 2 sinhMy + p s y  coshMy + p 6 y  sinhMy +/77 coshMy + p8 sinhMy 

+pgy 4 + pJoy 3 + plly 2 q- p l 2 y  + el3 [ 3 5 ]  

! 

2.8 0 
= 25 

Figure 9. Temperature correction profiles for different values of Gr. 
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t5 = 2 k M ( d ~ M  + d2f2), t6 = 2kM2(d,,~ + dj i ) ,  
m m 

kM2~ 2kJ~f2M: kM2f~  
I7 ~ - -  - -  ~ tg ~ - - ,  I9 - -  

m m m 

t~ t2 t3 
g6 - -  4 M  2, g7 - 4 M  2, gs  - M 2, 

t4 t5 2 t4  t6 2 /3  
g9 - M 2, gm = M 2 M 3, gl l  = M 2 M3 ,  

t7 t8 t~ 
g , 2 = ~ ,  g ,3=g ,  g ,4=~,  

1 
e, - 1 + k h  (g6  c o s h 2 M  - g7 s i n h 2 M  + (g~o - g 8 ) c o s h M  

+ (g9 - -  g u ) s i n h M  + gt2 - g13 .t._ g14 q- 2 M g 7  + g8 + M g l l  - (g6 + glo + gl  + g2 + g3 + g4 + gs ) ) ,  

e 2 =  - - ( g ~ + g 2 + g 3 + g 4 + g s + e l ) ,  
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Figure 11. Temperature correction profiles for different values of  q~. 
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Figure 12. Temperature correction profiles for different values of K. 

12912"~ - 6g,3"~ 
= + -M--~), 

- ( 2g,4 24gl2"] 
pl3=MP~2 e ,+ - -M-5-+  M---7-j, 

M 
J' = mh s i n h M  + M c o s h M  (p '  c o s h 2 M  - p2 s i n h 2 M  

+ c o s h M [  - p, - -  pl3 q- P3 - -  p2 --  (rL + r2 + r3  + r4 + r5 + r 6  -b r7)] 

+ sinhM [ 2p2 + p6 - p4 + pl2 + pS ] q- p9 --  pl0 "q- pl l  --  p12 + p13), 

j 2 =  - - j l - - ( r l + r 2 + r 3 + r 4 + r s + r 6 + r T ) ,  



j 3  = j 2  - -  p ,  - -  p 7  - -  p ~ 3 ,  j 4 = ~  , m h  - 2 M p 2  - p s  - M p s  - p , 2  . 

Equations [28]-[35] are evaluated numerically and the results are discussed in section 4. Since 
the problem involves too many nondimensional parameters, for the sake of  conciseness, we fixed 
some of  the parameters namely P = 5, b = 1.0, n = 1.5 and Re = 5.0 for all the numerical 
computations and analysed the effect of  other important parameters on flow and heat transfer. In 
each illustration, all parameters except the varying one are chosen from the set: (M, Gr, h, m, k, 
~b) = (2.0, 5.0, 1.0, 0.5, 1.0, 30°). The velocity distributions are computed up to first order, i.e. 
u = u~ = u~ + Eu~ (i = 1, 2) and these velocity distributions are shown in figures. In case of  the 
temperature distributions, only first order temperature is shown in figures, since the zeroth order 
temperature profiles are linear ([28], [29]). 

4. C O N C L U S I O N S  
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using the regular perturbation method with the product of Prandtl number and the Eckert number 
as the perturbation parameter. 

The effect of magnetic field on velocity is shown in figure 2. We observe that the effect of 
increasing magnetic field strength is to dampen the velocity. This is the classical Hartmann result. 
Figure 3 shows the effect of Grashof  number on the flow. The effect of increasing Grashof  number 
is to increase the velocity field. Physically, an increase in the value of Grashof  number indicates 
an increase of buoyancy forces which support the flow. The effect of the ratio of the heights of 
the fluids on velocity is shown in figure 4. We observe that the smaller the height of the upper 
electrically nonconducting phase, compared to the lower phase, the larger the flow field. Figure 
5 shows the effect of the angle of  inclination on velocity. We find that an increase in the value of 
the angle increases the velocity. The effect of  the ratio of the thermal conductivities on velocity 
is found to be insignificant (see figure 6). The effect of the ratio of the viscosities on velocity is 
shown in figure 7. We conclude from this figure that, the smaller the value of the viscosity of the 
fluid in the lower phase compared to the fluid in the upper phase, the larger the flow field. 

The first order temperature correction profiles are shown in figure 8 for different values of the 
Hartmann number M. We find that the magnetic field reduces the effect of dissipations. Figure 
9 shows the effect of the Grashof  number on temperature. Its effect is to increase the temperature. 
The effect of the ratio of heights on temperature field is the same as its effect on velocity (figure 
10). That is, the smaller the height of the upper phase compared to the lower phase, the larger 
the magnitude of the temperature. The effect of the angle of inclination on temperature correction 
is same as its effect on velocity (see figure 11). The effect of the ratio of the thermal conductivities 
of the two fluids on temperature is shown in figure 12. We find that the temperature increases with 
the increase in the value of the ratio k, implying that, the fluid in phase I with thermal conductivity 
better than that of phase II, adds to the heat transfer. The effect of the ratio of viscosities on 
temperature is shown in figure 13. We find that its effect on temperature is same as that of its effect 
on velocity field. The less viscous fluid in the lower phase adds to heat transfer. 

Acknowledgement--The authors thank the referee for his useful suggestions. 
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